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The Generalized Brillouin Theorem Multiconfiguration Method (GBT-MC) of 
Grein and Chang is extended and applied to the calculation of excited states. 
Orthogonality constraints to lower states as well as second-order interaction 
effects of states lying close together have been taken into account. In this way 
quadratic convergence can be guaranteed. Difficulties with coupling coefficients 
and Lagrangian multipliers of SCF methods can be circumvented. Test calcula- 
tions have been performed on valence electron excited states of C, HzO, and 
CH=O, and on core excited states of  Li. 
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1. Introduction 

Multiconfiguration (MC) wave functions allow for a large portion of the electron correla- 
tion via a very compact configuration expansion and have proven very successful in the 
investigation of molecular ground states. Applications to excited states have appeared 
only in recent years. 

In general, the different techniques for the determination of MC functions [1 ] can be 
divided into the following three steps: 

1) Choice of a one-electron basis set; construction of a set of orthonormal starting 
MO's Xi; selection of a set ofn  configurations G built from the Xi. 

2) Optimization of the linear coefficients Cv in the n-MC function 

,I, = E G" ~v(xi) (1) 
V=I  

and calculation of an upper bound to the energy E of the state in question. 
3) Improvement of the occupied MO's Xi within the given one-electron basis and 

repetition of steps 2 and 3, until no further lowering of E is achievable. 

Many of the methods developed so far for the optimization of q~ often encounter 
difficulties when applied to the treatment of excited states. For the case of the SCF 
approach, Das [2] and Hinze [3] have explained the origin of these difficulties and 
have proposed methods on how to overcome them. Another approach is the so-called 
Generalized Brillouin Theorem (GBT) Method which, so far, has mainly been used in 
ground state calculations (Grein and Change [3] ). 

* Present address: Dept. of Chemistry, University, Tainan, Taiwan, China. 
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It is the aim of this work to extend the GBT-MC method to excited state calculations 
(Sect. 2). Special attention is drawn to the problem how to guarantee the (quadratic) 
convergence of the energy. The proposed method is also able to yield single configura- 
tion (1-MC) wave functions for open and excited shell systems without the usual 
difficulties associated with coupling coefficients, Lagrangian multipliers and ortho- 
gonality constraints. Simple test calculations are presented in Sect. 3 for 3p states of 
the carbon atom. In Sect. 4 the 1A 1 states of the H20 and H2 CO molecules are dis- / 
cussed. Some of the excited states exhibit the special difficulties connected with a 
pseudo-crossing. Finally it will be shown in Sect. 5 that the GBT-MC method is 
specially useful for core excited states. 

2. Quadratically Convergent GBT-MC Method for Excited States 

The GBT-MC method for ground states has been described in detail by Grein and 
Chang [4]. Applying a unitary transformation to the MO's Xi: 

x; = x ,  + di jxj  (2) 
i 

the MC function (1) is transformed, up to first order in di], into 

,I" = '~ + E d i j %  (3) 
i<] 

where the ~ir denote singly substituted MC functions: 

% = ~ Cv" [q)v(Xi + Xj) - ff)v(Xj -+ Xi)] (4) 
r / = l  

The optimum orbital transformation coefficients may now be obtained from the 
so-called Super-CI (SCI) problem, which is the linear variation problem based on q* 
and all the xI'ij, Because of the Generalized Brillouin Theorem [5], which states that 
the fully optimized MC function q z~ is non-interacting with all its singly substituted 
wave functions: 

(xI *~ IH - E [ xlI/~ pt ) = 0 (5) 

the dij, which appear in the eigenvector of the SCI problem, will tend to zero as 
approaches ~opt. Several additional considerations are necessary in the case of 

excited states. 

Let us be interested in the ruth state of its symmetry. In order to obtain an upper 
bound to its energy in step 2, the MC expansion (1) should at least contain representa- 
tive configurations of the m - 1 lower states (n >~ m). According to the Hylleraas- 
Undheim theorem [6], an upper bound to the mth energy is then given by the ruth 
root of the n x n eigenvalue problem corresponding to Eq. (1), the so-called MCI 
problem. Some further comments concerning the selection of configurations and of 
the molecular orbitals in step t, which are of significance to excited state problems, will 
be given in the subsequent sections. 
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The main difficulty in excited state MC calculations is how to prevent the MO's in 
step 3 from being "improved" in such a manner that the energy expectation value 
decreases, indeed, but that the MC function becomes a (bad) representation of a lower 
state (root flipping problem). In the case of  the GBT approach, one may again appeal 
to the Hylleraas-Undheim theorem. To keep the eigenvector of the SCIproblern 
non-interacting with the m - 1 lower states, it suggests itself to include also the rn - 1 
lower MCI wave functions in the SCI basis. In this way one takes account of the fact that 
the MCI coefficients Cv are not constant but vary linearly with an MO improvement. 
Keeping the Cv fixed in each SCI step can only slightly reduce the rate of convergence 
in the case of the ground state, but may fully destroy the convergence in the case of 
excited states. This situation is sketched in Fig. 1. 

We will now mathematically formulate this idea. Let ,~m be the rnth root of  the MCI 
problem. After orbital transformation (1), the non-normalized ruth root of the new 
MCI problem is given by 

~m' (1 1 ~.. d]]) xPm + ~ di/qd~ + ~ m = - -  d i l d k l q t i / , k l  
~1 q q, la 

+ E ~u" ~u + E ~," di/7/~/+ O(da). (6) 
I,z I.z,i] 

m 
The qdi] ,k  l are  doubly substituted MC functions, the ~ #  are the other roots of the 
original MCI problem. The energy expectation value corresponding to wave function 
(6) is, up to second order in d, 

,{ 
- di~)E + 2 ~ dif(qdfflHl~ m) <E) = S (1 --  ~ 2 m 

q q 

+ 2 ~  m m cli/dkl((~i/ Iglq%z)+ (,I *m m IHIq" ~/,kZ)) 
i / , k l  

~, i/ 

(7) 

\ 
\ 

r Variation 

' x ~ of o% .x 

Fig. 1. Orbital and energy improvement  in 
the GBT procedure. - -  Energy eigen- 
values of  the MCI problem, - - -  energy 
expectat ion values of  MC funct ions  
with constant  CI coefficients Cv. x ~ 
are the starting MO's, • (m = 1, 2) the  
optimal MO's for the ruth state, and 
~rn are the MO's determined by the  
GBT method  under the restriction of 
constant  C v. The arrows denote  that  
the  ground state energy will be improved 
in any  case bu t  that  for excited states 
the contrary may  happen. Grein and  
Banerjee [7] have proposed to suppress 
these oscillations by strong damping 
via a root  shifting method  of  Saunders 
and Hillier [8] 
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S is the normalization constant and the E u are the energy eigenvalues of the original 
MCI problem. Optimizing (E} results in the following SCI eigenvalue problem: 

I E rn - (E) 

(0~[  H -  <E}] ~m) 

<xpm I H -  ( E > I ~ )  

m + (~ii ,  m[H - (E)[@ m } 

+ <,I,~ IH - <E> I,I~ ~} 

0 

< q ~ [ H -  <E) i,I2") 
+ (g,m IH - (E)[xP~l) d 0 

Tlfis equation may very efficiently be solved by single-vector diagonalization techniques, 
using the starting vector (1, 0, 0 , . . . ) .  Equation (8) differs in two respects from the 
SCI equation of the conventional GBT procedure. Firstly, as anticipated, the other 
MC functions occur as basis functions. Omitting them as e.g. in Ref. [7] means, that 
one works with an "improved" MC function which is not correct in the first order, 
and with an energy expression which is not correct in the second order. Secondly, 
there occur extra matrix elements which are formally obtained by exchanging a 
single substitution between a bra and a ket. It is interesting to note that some of these 
additional matrix elements also occur in the MC-SCF formalism of Das et  al. [2b]. 
Usually they are omitted either because only the linear terms are retained in Eq. (6) 
as in Ref. [4] or because it is argued that they are usually orders of magnitude smaller 
than the non-exchanged terms [1 ]. However, firstly this statement will not hold in 
every case; and secondly, concerning the diagonal elements, it is not the ratio 

but 

<,P'~,qlHiCem>/{<'Ifi.~ IHI,P~> - E m } 

which determines the influence of the extra matrix elements. This latter ratio may be 
quite large in the case of two nearly degenerate, strongly mixed states. In such a case, 
the convergence behavior of the method may be fully destroyed, if the extra matrix 
elements are neglected. However, as long as the ruth state is well separated from the 
other ones, tile procedure remains "nearly" quadratically convergent. Therefore, it 
seems justified to omit these extra matrix elements in most cases, since it results in a 
considerable simplification of the computational procedure. Furthermore it is usually 
sufficient to retain only the m - 1 lower gA*'s in the SCI problem. 

Another computational simplification may and should be carried out in those cases 
where one of the 'I*/~ is nearly equivalent to a lower MC function ~u .  In order to 
avoid the nearly linear dependency, this ~ u  may be omitted from the SCI basis. 
In many cases such a q'# corresponds to a configuration which has only been included 
in the MC expansion to represent one of the lower states and to make the Hylleraas- 
Undheim theorem applicable, but which does not significantly contribute to electron 
correlation. Then it is even simpler to omit this configuration also in the MC expansion. 
In this case the (m - 1)st MC root is still an upper bound to the energy of the ruth 
state, since upon convergence it becomes identical with the ruth root of the SCI 
problem. 

=0 

(s) 
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Usually less than 10 iterations are sufficient to reach the limit o f  the MC root within 
1 meV. Single configuration calculations converge even faster. I f  the starting orbitals 
are not too bad, the SCI energy converges from below and oonsiderably faster than 
the MC energy, which decreases. The orbitals and the other roots o f  the MCI and 
SCI problems, which may be taken as approxhnations to other states, of  course con- 
verge more slowly. 

Hinze [9] has proposed an MC-SCF procedure where the MO's are optimized in the 
mean field of  several states. This idea has several advantages. Firstly MC functions of  
several states are obtained froria a single iteration process; secondly, because of  a unique 
orthogonal MO basis for several states, the evaluation of  transition integrals is drastically 
facilitated; finally the root-flipping problem is circumvented. A corresponding technique 
is simply incorporated into the GBT method by optimizing a weighted mean of  several 
MC roots in the SCI step. By changing the weights, one or another of  the states can be 
optimized to a larger extent. This technique is not recommendable in cases where two 
states differ by a significant orbital reorganization, as e.g. a valence and a core 
excited state. 

3. Test Calculations on 3p States of the Carbon Atom 

We have tested the proposed method on some 3pe states o f  the carbon atom. The 
ground state is ls 2 2s22p 2 3p. The valence excited state ts22p 4 ap has so far not 
been detected experimentally, but since its term value is needed in semiempirical 
molecular calculations, its energy has been determined by several empirical and 
semiempirical methods which, however, did not agree. Jordan and Longuet- 
Higgins [10] obtained 18.86 eV by vertical analysis of  experimental energies. 
Verhaegen and Moser [1 1] obtained 19.23 eV from isoelectronic extrapolation 
of correlation energies and Pittel mad Schwarz [12] predicted 19.39 eV from 
vertical analysis of  correlation energies. Furthermore, different SCF energies have 
also been reported: - 3 6 . 9 4 4 8  a.u. by Verhaegen and Moser [11 ] and -37 .1464  
a.u. somewhat later by Offenhartz [13].  For comparison three types of calcula- 
tions are carried out, tile results of  which are collected in Table 1. 

Table 1. Energy values for the carbon atom 

Excitation 
Type of Function Ground State 3p ls22p4 3p Energy 

Single configuration -37.6886 a.u. -36.9448 a.u. 20.24 eV 
Two configurations -37.7060 a.u. -36.9276 a.u. 21.18 eV 
(Internal correlation) (-0.47 eV) (+0.47 eV) 

MC -37.743 a.u. 36.979 a.u. 20.8 eV 
(Semi-internal corre- (-1.0 eV) (-1.4 eV) 
lation) 

Total energy -37.845 a.u. -37.137 a.u. a 19.3 eV 
(External correlation) (-2.8 eV) (-4.3 eV) 

a MC energy + semiempirical all-external correlation correction. 
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1) Our single configuration calculations are comparable to ordinary SCF calculations. 
However, our method avoids the difficulty in connection with Lagrangian multi- 
pliers and does not start from an energy expression with coupling coefficients. 
The symmetry-fixed coefficients of a multideterminantal configuration can 
automatically be determined by the GBT procedure. However, it turned out 
that the numerical accuracy is increased and the computational time is 
decreased when some phase relations of the determinants are accounted for in 
the MC basis. Therefore we usually couple two singly occupied shells to a 
singlet or a triplet. Our excited state energy agrees with the value of Verhaegen 
and Moser, the corresponding SCF term value is 20.24 eV (see Table 1). 

2) The two 3pe valence configurations are of course interacting with each other. 
The corresponding internal correlation energy of the ground state is -0 .47 eV. 
Verhaegen and Moser [11] did not perform a two-configuration calculation for 
the upper state but proposed to approximate the internal correlation energy 
of the excited state by the negative value of that of the ground state. Since the 
optimized orbitals for the ground and the excited state differ considerably, this 
identity is not exact. However, our calculation shows that the internal correla- 
tion energy of the upper state is only about 0.005 eV smaller in magnitude than 
that of the lower one. 

3) According to Sinano~lu [14], specific non-transferable correlation effects of 
considerable magnitude are caused by interaction of the valence configurations 
with the lowest Rydberg type configurations. The most significant semi-internal 
correlation configurations of the two valence states under consideration are 
ls a 2s2p 23s' 3p (two different spin couplings), and 1sZ2s2p 23d' 3P(three 
different spin couplings), which lower the ground state by 1 eV. In the case 
of the ls22p 4 3/o state we have furthermore to take into account that it is not 
the lowest one of its symmetry. The following states are lower in energy: 
ls22s22pnp 3p, ls 2 (2s2p2 4P)ns 3p, ls 2 (2s2p2 4P)nd 3Pand ls2(2s2p2 2D)3d 
3/. Among these the n > 3 configurations may be neglected in the MC expansion 
since the different spatial extent results in negligible interaction. On the other 
hand the ls 22s2p 23d' correlation configurations and the ls z 2s2p z 3d Rydberg 
state configurations must not be identified, since their 3d and 3d' orbitals differ 
considerably in spatial extent. Performing the corresponding MC calculation for 
the ls22p 4 3p state resulted in an energy lowering of 1.4 eV. An estimate of the 
total energy is finally obtained by adding the semiempirical all-external correla- 
tion energy increments given by Sinano~lu [19]. It shows that the estimate of 
Moser [11 ] is the most reliable one, whereas the prediction of Longuet-Higgins 
[10] is low by nearly half an electron-volt. 

4. Valence and Rydberg Excited States of Molecules 

In order to gain more insight into the method, especially in the case of two states 
with small energy separation, we have performed calculations on the ground and 
lower excited 1.41 states of water and formaldehyde. 
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4.1. 1A 1 States o f  Water 

The ground state configuration is q~o = lal  2 2al 2 b2((7) 2 3al(n) 2 bl(Tr) 2 1A 1. The two 
lowest excited states of the same symmetry are obtained by excitation of oxygen 
lone pair electrons (3a 1, b 1) into the lowest empty MO's. The experimental vertical 
excitation energies are 9.7 eV for B (3a 1 -+ 3sal) and 10.2 eV for / )  (b 1 -+ 3pbl) [13]. 
These configurations are expected to interact strongly. 

The calculations are performed for the ground state equilibrium geometry (R(O-H) = 
1.8a o ; a = 105~ The AO basis is the same as that used by Buenker and Peyerimhoff 
[16]. It consists of a contracted Gaussian lobe set of double-zeta quality augmented 
by polarization functions and one sp set of Rydberg functions on oxygen, giving a 
total of 1 la b 2az, 6b2, and 7bl symmetry orbitals. The ground state SCF energy 
of 76.0311 a.u. is 1.0 eV above the Hartree-Fock limit [ 17]. 

4.1.1. Ground State 

Results for the ground state are collected in Table 2. Double excitation of each of 
the three kighest occupied orbitals into an empty orbital of the same symmetry 
results in an energy lowering of about 1/3 eV. The correlation orbitals b~, a~, b] 
are of valence character with only a slight admixture of diffuse functions, as may 
be seen from Table 3. 

Concerning the MC funct ions/ /and l l l  it should be remembered that the wave 
function 

' P = ~ o  + C1" (ba--* b~) + C2" (b 21~ b ~; ~) (9a) 

can be transformed by a unitary MO transformation into 

eg = Cb'o + C~" (b'l -+ b~') (9b) 

or into 

= .,~pv "b W'tf �9 
,v (9c) 

Table 2. MC energies of the ground state of water 

Number of  
Case Configs. Wave Function* Energy (a.u.) 

I 1 (~o -76.0311 
H 2/3 4)o + (b 2 ~  bT 2) and/or (bl -~ b~) -76 .0424 
III 2/3 4o + (3a I -+ a~ 2) and/or (3al -+ a~) -76 .0435 
I V  3 4)o + (3a~--+ a~ 2) + (b21 ~ b~ 2) -76 .0552  
V 3 4o + (3aa --+ a~) + (b I -+ b~) -76 .0638 
VI 5 ~ o + ( 3 a l - ~ a ~ ) + ( b l ~ b ~ { ) + 2 ( 3 a l b 1 ~ a ~ b T )  -76 .0663 
VII 4 ~o + (3a21 -+ a~ 2) + (bl  2 ~  bT ~) + (b22-~ b~ 2) -76 .0684  
VIII 4 4~o + (3al ~ a~) + (bl ~ b~) + (b 2 -+ b~) -76 .0880  

I X  7 Case VII + VIII -76 .0910  a 

~o la 2 2a~ b22 2 2 * = 3al bl .  
a A straightforward CI, including single and double excitations from all valence orbitals, yields 

76.1886 a.u. [16]. 
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Table 3. Orbital expectation values (1/r o) and ((r - (r)) 2) for the three lowest 1A 1 states of water 
calculated from the case VIII wave functions a 

Occupied Valence Orbitals 

State lal  2al b2 3al bl 

Correlation Orbitals Rydberg Orbitals 

b~ a ~ b ~ 3sa 1 3pb I 

r 2 X 0.053 1.63 2.1 1.9 1.6 4.6 5.2 6.6 - -- 
/~ 0.053 1.63 2.4 1.9 1.6 3.2 9.6 3.1 23 b 40 

0.053 1.62 2.3 2.0 1.8 3.7 5.9 6.2 26 44 

1/r X 7.64 1.22 1.0 1,1 1.2 0.9 0.8 0.8 - - 
/~ 7.64 1.21 0.9 1,1 1.1 1.0 0.9 1.0 0.29 0.22 
/~ 7.64 1.19 1.0 1.1 1.1 1.0 0.9 1.0 0.27 0.17 

a It should be noted that the MC wave function is invarimlt against a unitary transformation of 
those orbitals which have the same occupancy in all configurations. Therefore the inner shell 
orbitals are not fully determined. 

b The three components of r 2 (6.6; 8.5; 7.7aao) indicate that the 3s orbitals of/~ has some 
admixture of 3pal and a~. 

with the approximate relation C; 2 ~ C;'. Therefore wave functions of type (9b), 

which describe the correlation by a single excitation, have quite large configura- 
tion mixing coefficients C'. In the wave functions II and III, C'  is about 0.25-0.3,  
corresponding to C" values of 0.07-0.08. Although wave functions (9a), Ob) ,  (9c) are 
equivalent, the convergence of the GBT procedure is faster in the case of  (9a). 

When we correlate two or more electron pairs, single and double excitations are no 
longer equivalent. In the case of  double excitations, the individual energy lowerings 
are nearly additive (compare wave functions I - IV ) .  This does not  hold for several 
singly substituted configurations, since these are strongly interacting (compare wave 
functions I V w i t h  V and VII with VIII).  In the underlying case, several single 
excitations are considerably more effective than several double excitations in 
describing electron correlation. Whereas the op t imum orbitals in doubly sub- 
sti tuted MC expansions are approximately natural orbitals, this is not the case for 
orbitals of  singly substituted MC expansions. We arrive at the conclusion that 
natural orbitals are not  necessarily most suitable, when correlation shall be effect- 
ively described by  a short CI expansion. 

4.1.2. Excited States 

In Tables 4 and 5 we present MC energies for the first two excited 1/11 states. 
Whereas it is very difficult to handle single configuration wave functions with two 
open shells of  the same symmetry with singlet spin coupling by the SCF technique 
[18] there occur no problems with the GBT method.  Of course the 1-MC functions 
(cases I)  interact with the lower lying configurations. The interaction of ~o with 
(3ai-+ 3s) is considerably weaker (energy shift = +0.17 eV, Table 4) than with 
(ba -+ 3p) (~xE = +0.51 eV, Table 5). 
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Table 4. MC energies of the first excited 1A 1 state of water (B) 
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Number of 
Case Configs. Wave function Energy (a.u.) 

I 1 (3al ~ 3s) -75.7153 
H 2 (3a 1 ~ 3s) + $o -75.7089 
HI 3 (3a~ ~ 3s) +~o + (bx--" 3p) -75.7149 
I V  4 Case III+ (b2 -~ b~) -75.7150 
V 5 Case I I I+ (3alb 1 ~ 3s3p) -75.7151 
VI 4 Case I I I+ (3aa 2 --, 3sa*) -75.7153 
VII 8 Case V[ + (3alb 1 -~ 3sb'~) + (3alb 2 ~ 3sb~) -75.7167 
VIII 6 Case VI + (3alb~-~ 3sbT 2) ~- (3alb~ ~ 3sb~ 2) -75.7302 

Tabte 5. MC energies of the second excited 1,4 x state of water (D) 

Number of 
Case Configs. Wave Function Energy (a.u.) 

I 1 (bl ~ 3p) -75.7119 
II  2 (b~ -~ 3p) + •o -75.6931 
III 3 (bl -~ 3p) + ~o + (3al -+ 3s) -75.6910 
i v 4 Case I I I+ (b 2 ~ b~) -75.6953 
V 6 Case I V  + (3a lbi -~ 3s3p) -75.6953 
VI 9 Case V + (b2 bl -+ b~ 3p) + (bl 2 ~ lr*3p) -75.6963 
VII 10 Case I V  + (b21 ~ 3pb~) + (3a12b1 ~ 3pa~{ 2) + 

2 , 2  2 * 2  +(blb2-~ 3pb2 )+ (3a lb l -~3sb l  ) 
+ (3a~ ~ 3sa~) + (3aab~ -+ 3sb~ 2) 

Case I V  + (b ~ ]23pbT) + (b ~ b~ -,  3pb~ 2) , 
* 2  2 + (3albl ~ 3Sbl ) + (3alb2--, 3sb~ 2) 

v i i i  7 
-75.7090 

-75.7090 

The two Rydberg states are bo th  strongly mixed.  The 3-MC funct ions  of  the three 
states are 

(X 1AI)~  0.90q~ o - 0.32 (3al-+ a] ~) - 0.27 (b 1 -+ b~) 

(/] IA1) ~ 0.03q5 o + 0.92 (3al -+ 3s) - 0.40 (ha -+ 3p) 

(s 1A1) ~ 0.13q5 o + 0.42 (3al -+ 3s) + 0.90 (b l -+  3p) 

Fur the rmore  the 3s orbitals possess different  amounts  of  3p admixture.  However, the 
Rydberg mixing has no  large influence on  the energy. Therefore the energies are 
raised b y  only  - 0 . 1  eV if the average of bo th  states is opt imized,  thereby avoiding 
any possible convergence difficulties with the third root.  At the single-configuration 
level the exci tat ion energies are too small by  about  1 eV (see Table 6). One can 
approx imate ly  take account  of  the missing correlat ion con t r ibu t ion  on  the 3-MC 
level. Inc luding the valence shell correlat ion in  all three states in the same manner  
by  including Rydberg and correlat ion orbitals of the same symmet ry  in the MO 
basis (cases VII f ) ,  the calculated exci ta t ion energies agree well with the CI results 
and with the exper imental  values (see Table 6). It  is interest ing to no te  that  in the 
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Table 6. Excitation energies of water 

T. C. Chang and W. H. E. Schwarz 

Ground State 

First Excited State Second Excited State 

Wave Fct. E (eV) Wave Fct. E (eV) 

SCFqike level Case/ CaseH 8.77 CasellI 9.25 
3-MC level Case V CaseIII 9.49 CaseIII 10.14 
4-MC level Case VIII Case IV 10.15 Case IV 10.69 
"Balanced" MC level Case VIII Case VIII 9.73 Case VIII 10.31 
CI value [16] 9.80 10.32 
Experimental [151 X 1/11 /~ 1/tl 9.7 D 1A1 10.2 

ground state the addition of double excitations to the single excitations is rather 
inefficient, whereas in the excited states the situation is just reversed. 

4.2. 1A 1States o f  Forrnaldehyde 

The ground state configuration of  CH20 is la] 2a~ 3a 2 4a] lb~ 5a1(o) 2 lbl(Tr) z 
2b2(n) z 1A 1. The excited 1A 1 states have been the subject of much controversy 
[20]. From the more recent experimental [21 ] and theoretical [22] investiga- 
tions we know that the lowest excited I/11 states are obtained by  excitation of an 
oxygen lone pair electron 2b2(n ) into np(b2) and nd(b2) Rydberg orbitals. The 
energy of  the lowest of  these states, C(n -~ 3p), is 7.97 eV. Directly above the first 
ionization limit (2B2) at 10.87 eV the absorption spectrum shows no special 
features, but the photoionization mass spectrum indicates a metastable species 
near 12 eV. Above this energy the absorption and photoionization coefficients 
show pronounced structures with maximum near 13 eV. The second verticai 
ionization limit (2B1(~)) is 14.5 eV. 

The main problem has been the location o f  the 7r -+ rr* 1/11 state. Even the most 
recent ab initio calculations [22, 23] predict the state with large 7r -+ 7r,* character 
in a wide range from 9.7 to 12.2 eV, most probably slightly above 11 eV. Further- 
more the mixing of  7r -+ 7r* with ~r -+ 3p and n -+ np,nd is calculated very differently. 

We have performed MC calculations on several 1A 1 states. The following geometric 
parameters were used: R(CO) = 2.29ao, R(CH) = 2.12ao, a(CH2) = 118 ~ A con- 
tracted Gaussian lobe set of  double-zeta quality was augmented by one sp Rydberg 
set [24] but with no d functions. 

4.2.1. Ground State (Table 7) 

Ground state energies are given in Table 7. The single configuration result lies less 
than 0.1 a.u. above the Hartree-Fock limit [23].  As in the case o f  H20 the energy 
lowerings of  double excitations are nearly additive, whereas the interaction of 
single excitations contribute an additional amount of  correlation energy. 
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Number of 
Case Configs. Wave Function Energy (a.u.) 

I 1 
II 2/3 
HI 2/3 
I V  2/3 
V 4 
VI 4 

qSo 113.811 
q~o + (n ~ b~) and/or (n 2 ~ b~ 2) 113.820 
~o + (~r ~Tr*) and/or &2_+ 7r.2) 113.852 
~o + (a --, a~) and/or (c~ 2 -+ a~ 2 ) 113.821 
~0 + ( n2~  b~ 2) + ( 7r2~ re*2) + ( 2  __.. a~2) 113.870 
~o + (n ~ b~) + (zr ~ n'*) + (o ~ a~)  1 1 3 . 8 8 5  

4.2.2. Lowest iA x Rydberg State (Table 8) 

The SCF excitat ion energy is too small again. However, we obtain a quite good 
result when we correlate the three highest valence shells in both  the ground and 
the excited state. The interaction of  the (n -+ 3p) configuration with 4o and 
(It ~ ~r*) is negligibly small. 

4.2.3.7r -+ 7r* Singlet State (Table 9) 

The interaction of  the excited valence configuration with 4o is very strong, so that it 
collapses if the orthogonali ty to the ground state is not taken into account. Again 
the interaction with the lowest (n -+ 3pb2) Rydberg configuration is quite weak. 
However, the 7r* orbital has considerable diffuse orbital (3pbl)  admixture, and 

(lr ~ 7r*) and (Tr -+ 3p) have nearly equal weights in the 10-Me function. The com- 
plement of  this function, another state with 7r -+ 7r* character was found ~1.5 eV 

higher in energy. This is in rough agreement with most ab initio calculations [22] 
which find the r -+ 7r* configuration mixing with several higher Rydberg con- 
figurations 1. 

5. Core Excited States of  the L i t h i u m  A t o m  

The GBT method has also been tested to see how good highly excited core hole 
states can be handled. As an example 2 the l i thium atom has been chosen, since 
accurate experimental  data are available [25].  

We used a Gaussian lobe basis (8/3/2).  Calculations with a larger basis showed that 
the valence states are too high by about 0.1 eV, and the core excited states by 
about 0.2 eV. Different MC results are presented in Table 10. For  each term we 
have calculated a wave function which includes internal and the main part of  the semi- 
internal correlation. To this energy we have added the semiempirical external 

1 Contrary to this, Langhoff et al. [23] very definitely stated that the ~ -+ ~r* state is pure and 
has no diffuse components. However, it should be noted that they have not taken account of 
the orthogonality constraints to any of the lower IA 1 Rydberg states, except in one case, in 
which they found an appreciable admixture of diffuse character! 
z Further examples are discussed by the present authors in: Intern. J. Quantum Chem. Symp. 
10, 91 (1976). 
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Table 8. MC energies of the C(n .-+ 3pb2) state of CH20 
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Number of 
Case Configs. Wave Functions 

Energy 
(a.u.) 

Excitation 
Reference Energy 
G.S. Wave F. (eV) 

I 1 
/ /  2 
III 3 
I V  3 
V 3 
VI 5 

(n ~ 3p) 113.533 
49o + (n ~ 3p) 113.533 
490 + (n -+ 3p) + (lr ~ ~r*) 113.533 
49o +(n-+ 3p)+(zr2n~zr*23p) 113.580 
49o + (n-+ 3p) +(a2n~cr*23p.) 113.581 
490 + (n --* 3p) + Qr2n -+ lr .2 3p) 113.597 

+ (cr2n "-~ o .2 3p) + (n 2 ~ b~3p) 

I 7.0 

VI 7.85 

Table 9. MC energies of a (Tr ~ 7r*) 1A 1 state of CH~O 

Number of Energy Reference 
Case Configs. Wave Function (a.u.) G.S. Wave F. 

Excitation 
Energy 
(eV) 

I 1 (Tr ~ 7r*) 113.650 I 4.4 
H 2 0o + Or --* 7r*) 113.434 I 10.3 
II[ 3 490 + (n --+ 3p) + (~r~ 7r*) 113.432 
1V 10 0o + (n ~ 3p) + (Tr ~Tr*) + 113.450 VI 11.8 

+ (~r ~ 3p) + (Tr ~ 7r*, 
ncrlr-excit.) + Qr -+ 3p, 
mro-excit.) 

correlation energy increments of Sinano~lu [19]. The results agree within about 

0.1 eV with the experimental excitation energies. According to our basis defect 
the calculated values tend to be slightly too large. A few comments on some 

results are in order: 

ls23s ZS: The GBT method guarantees that the ls2ns configuration is automatically 
noninteracting with all lower ls2ms configurations, as they differ only by a single 
excitation. Therefore the second root of the 2-MC ansatz lsZ2s + ls23s yields the 
same energy as the single lsZ3s configuration. 

ls2s 2 2S: This configuration is automatically noninteracting with ls22s. Taking 
both  configurations, the 2-MC function is invariant under unitary transformations of 
ls and 2s. Therefore the 2-MC function converges faster. When other configurations 
are included, e.g. l s2p  2 for internal correlation, ls22s is no longer noninteracting 
rigorously. Nevertheless, since the configurations are still nearly orthogonal, the 
energy will not increase but  decrease (by 0.15 eV in our case) if we add ls22s. The 
reason is that then the ls orbital of the correlation configuration ls2p z can be freely 
optimized in the ls2s subspace and is not forced to be the same as in the ls2s z con- 
figuration. The internal correlation energy is 1.30 eV, which agrees with the value 
of the "core analog" Be lsZ2s 2 (1.29 eV). The question whether there is a notice- 
able interaction with the lower lying lsZns configurations has a negative answer. 
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Excitation + External 
Energy Energy Correlation Exp. 

Term MC Function (a.u.) (eV) (eV) (eV) 

1s22s 2S 1-MC -7.4295 0 0 0 
3-MC: + (ls2s 2) + 

(ls2p 2) -7.4299 

1s22p 2pO 1-MC -7.3593 1.91 1.9 1.85 
3-MC: + (Is2p2p) -7.3682 1.67 
5-MC: + (ls2p3d) -7.3725 1.55 

ls ~ 3s 2S 1-MC (=2-MC) -7.3070 3.33 3.4 3.32 

ls ~ 1S+ 1-MC -7.2333 5.34 5.45 5.39 

ls2s 2 2S 1-MC (=2-MC) -5.3415 56.82 
3-MC: + (ls22s) + 

(ls23s) -5.3413 56.82 
2-MC: 1-MC + (ls2p 2) -5.3836 55.67 
3-MC: + (ls22s) -5.3890 55.52 56.7 56.35 

ls2s2p 4.oo 1-MC -5.3518 56.54 57.45 57.44 

ls2s2p 2ap~ 2-MC -5.3396 56.87 
3-MC: + (ls22p) -5.2896 58.23 
5-MC: + (ls2p3d) -5.2947 58.09 59.0 58.91 

ls2s2p~P ~ 2-MC -5.2051 60,53 
3-MC: + (ls22p) -5.1995 60.68 
5-MC: + (ls2p3d) -5.2321 59.79 60.45 60.40 

ls2s 3S+ 1-MC -5.1067 63.21 64.45 64.41 

ls2s 1S+ 1-MC -5.0784 63.98 
2-MC: + (ls 2) -5.0333 65.20 66.25 66.15 

This also justifies the omission of the continuum. The estimated excitat ion energy, 
including a basis defect in the SCF energy of  about 0.2 eV, is then 56.5 eV. The 
experimental value has been determined only very recently and is 56.35 -+ 0.01 eV 
[25]. 

ls2s2p 2pO: There exist two linear independent terms, differing in tile spin coupling. 
They may be approximated by ls(2s2p 3p)2p and ls(2s2p 1p)2p. The neglect of the 
ls22p 2/, ground state results in much too low energies, especially for the lower 

term (2xE(a2P ~ = 1.36 eV; 2 ~ ( ~ P  ~ = 0.15 eV). Also the semi-internal correlation 
by Is2p3d is very different in both  terms (e(2aP ~ = 0.14 eV; e(~P ~ = 0.89 eV). 

6. Summary and Conclusion 

We have developed an MC method which is based on the generalized Brillouin 
theorem and leads to upper bounds of  excited state energies. The upper bound 
proper ty  is guaranteed by  including the lower configurations in both  the MCI 
and SC1 steps. The off-diagonal matrix elements in the SCI matr ix lead to the very 
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good convergence property.  The convergence behavior is often drastically made 
worse, if not all interaction matrix elements are explicitly taken into account (e.g. 
in perturbative schemes or when not  all single substitutions are considered in order 
to reduce the dimension of the SCI problem). 

In several cases not all lower configurations have to be included in the MC ansatz. 
In some cases we may obtain single configuration wave functions with the upper 
bound property,  which cannot l~e obtained b y  the ordinary RHF technique. To 
this class belong many of  the higher excited Rydberg states, and, in practice at 
least, also several types of  core excited and ionized species. For example, the 
different singly ionized species of a molecule are automatically non-interacting in 
our method.  Furthermore the method can quite efficiently overcome the con- 
vergence problems often met in ordinary SCF hole state calculations. Since we have 
not  to introduce Lagrangian multipliers we can handle states with several open 
shells of the same symmetry equally well. In the case where the symmetry adapted 
configurations are a complicated sum of determinants (as e.g. ls2p3d 2p of Li), we 

can do without  specifying the coupling coefficients whereby the computat ional  
effort is often even reduced. 

When we go beyond the SCF approximation the main problem with the MC method 
is the selection of correlation configuratiolas. Examples given for water show how 
critical this is. Krauss, Schaefer, Sinano~lu, Wahl, and others [21 ] have given advice 
which, however, leads to unwieldy long MC expansions in the case of  excited states 
of polyatomic molecules. 

The second unsolved problem with the GBT-MC method is a computat ional  one. 
Before the method can compete with ordinary CI methods,  special techniques have 
to be developed in order to calculate the SCI matr ix from the AO integrals more 

quickly by  exploiting that  the SCI basis consists mainly of  single excitations and 
that all off-diagonal matrix elements vanish when the i teration has converged. 
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